Titre : Comptes rendus de l'Académie des sciences. Série 1, Mathématique
Auteur : Académie des sciences (France). Auteur du texte
Éditeur : Elsevier (Paris)
Éditeur : Centrale des revuesCentrale des revues (Montrouge)
Éditeur : ElsevierElsevier (Paris)
Date d'édition : 1987-08-30
Notice du catalogue : http://catalogue.bnf.fr/ark:/12148/cb34394200t
Type : texte texte
Type : publication en série imprimée publication en série imprimée
Langue : français
Format : Nombre total de vues : 29122 Nombre total de vues : 29122
Description : 30 août 1987 30 août 1987
Description : 1987/08/30 (SER1,T305,N8). 1987/08/30 (SER1,T305,N8).
Droits : Consultable en ligne
Identifiant : ark:/12148/bpt6k5744571t
Source : Archives de l'Académie des sciences, 2008-94315
Conservation numérique : Bibliothèque nationale de France
Date de mise en ligne : 01/12/2010
- Aller à la page de la table des matièresI
- CONTENTS 1987 - VOLUME 305 - SECTION I - N° 8
- .......... Page(s) .......... 319
- .......... Page(s) .......... 319
- Let d>0 be an integer, Vd the vector space of homogeneous polynomials in x and y, of degree d, with complex coefficients, C[Vd] the algebra of polynomial functions
. The group G=SL(2, C) operates in a natural way in Vd' and so in C
; let Ad be the subalgebra of G-invariant elements in C
; let
be the number of elements in any minimal generating system of the algebra Ad (number of fundamental invariants for binary forms of degree d). We improve some minorations of
obtained by V. G. Kac and V. L. Popov.
- .......... Page(s) .......... 323
- .......... Page(s) .......... 323
- This Note takes place in the frame of the study of Differential Geometry on the unitary dual
of a Lie group G in the neighbourhood of a point
in particular of the deformations of
; we consider here the case where G is a motion group (see also [4]); a similar study in the case of a semi-simple group G has been made in [3].
- .......... Page(s) .......... 331
- The coexistence of two stable periodic solutions for a two-dimensional autonomous ordinary differential system including the cubic term xy2 as the only nonlinearity is studied by mean of the theoretical approach of singularities proposed by M. Golubitsky and W. Langford. The unfolding obtained by a perturbation of a
-codimension 2 organizing centre yields a topological description of this system's multiple periodic trajectories that bifurcate from the equilibrium solution.
- .......... Page(s) .......... 337
- .......... Page(s) .......... 337
- Let us consider a semi linear equation and a subvariety
by which there are exactly two characteristic hypersurfaces
with standard hypothesis of transversality. If u is a sufficiently regular solution, conormal with respect to
we define its two principal symbols on the conormal bundles to
and to
; these symbols coïncide outside
with the ordinary symbols, and each of them satisfies a transport equation; in the case of a second order equation, we can study complete symbols in the same way, and we deduce the propagation on
(for instance) of properties of the kind "u is classical conormal in the neighborhood of a point
.
- .......... Page(s) .......... 341
- .......... Page(s) .......... 341
- The bisecants to a space curve with coplanar tangents at the intersection points form a curve whose singularities are studied by the method of principal parts.
- .......... Page(s) .......... 345
- We give the number of rational points of some algebraic curves over finite fields associated with special cyclic codes. We deduce examples where the Weil bounds are reached.
- .......... Page(s) .......... 349
- .......... Page(s) .......... 349
- In this Note, we introduce the cobordism group Dn of links of n intervals. This group both generalizes the classical knot cobordism group and braid group
. Actually, Bn injects in
and
is isomorphic to the knot cobordism group. To conclude, we construct an invariant for
. This construction uses the localization of a wedge of n circles. Some examples are computed.
- Dynamical Systems
- (see Tome 305, Series I, 1897, p. 331)
- .......... Page(s) .......... 353
- On a rectangular domain divided in two squares, we solve a Poisson equation by a spectral method on the first square and a finite element method on the second one. Error estimates are given for two kinds of matching conditions on the interface.
- MATHEMATIQUE 1987 - Tome 305 - Série I - n° 8
C. R. Acad. Sci. Paris, t. 305, Série I, p. 331-336, 1987 331
Équations différentielles/O r dinar y Differential Equations
(Systèmes dynamiques/D_ynamica/ Systems)
Solutions stables périodiques multiples d'un champ de
vecteurs sur R2 caractérisé par un monôme de degré 3
Philippe TRACQUI et Jean-François STAUB
Résumé — La coexistence de deux solutions stables périodiques pour un système différentiel
ordinaire autonome de dimension 2 incluant le terme cubique xy 1 comme seule non-linéarité est
étudiée en utilisant l'approche théorique des singularités proposée par M. Golubitsky and W.
Langford. Le déploiement obtenu par perturbation d'un centre organisateur de Z2-codimension 2
fournit une description topologique des trajectoires périodiques multiples de ce système qui
bifurquent à partir de la solution d'équilibre.
Multiple stable periodic solutions of a vector field on R2 characterized by a
monomial ofdegree 3
Âbstract — The coexistence of two stable periodic solutions for a two-dimensional autonomous
ordinary differential System including the cubic lerm xy 2 as the only nonlinearity is studied by mean
of the theoretical approach of singularities proposed by M. Golubitsky and W. Langford. The
unfolding obtained by a perturbation of a Z2-codimension 2 organizing centre yields a topological
description ofthis System's multiple periodic trajectories that bifurcate from the equilibrium solution.
Abridged English version — In this paper we use singularity theory methods to establish that
the autonomous nonlinear differential System (1) admits two stable periodic solutions for a same
set of parameter values. For a given bifurcation parameter A, we consider the family of germs
g(u, X) which hâve Z2-symmetry and which are defined by équation (2). Following a theorem
of [1], there exist germs g (u, X) such that locally solutions to g (u, X) = 0 are in correspondence
with small amplitude periodic •solutions of System (1).
According to the classification results given in [2] for Hopf bifurcation points where one of the
hypothèses in the classical Hopf theorem fails [3], we try to characterize germs g (u, X) which are
Z2-equivalent [1] to the reduced bifurcation problems given by (1) in a neighbourhood of such
degenerate Hopf bifurcation points.
By Computing the successive partial derivatives ax, az, azz of the function a given in équation
(2), a first family of Z2-codimension 1 degenerate points is determined (points V and W,
Fig. 1). They are defined by the condition az = 0 and at such points, the bifurcation problem is
Z2-equivalent to the germ given by équation (4) [1]. The phase plane topologies in a
neighbourhood of the points V and W are given by the universal unfolding associated to the germ
(4), i. e. by the équation (5). The bifurcation diagrams associated to H(w, X, a) always hâve a
single branch of periodic solutions. A fold of this branch appears as soon as a crosses a zéro
value. According to the sign of the derivatives ax and azz, the supercritical solutions of (1)
which bifurcate from the equilibrium solution can be either stable or unstable. The parameter
A being an unfolding parameter, this theoretical approach establishes obviously the same results
as those previously obtained by looking for the values of A for which the u2 coefficient of the
Hopf theorem vanishes [4].
By varying the values of the remaining parameters, we then try to find a family of organizing
centres with higher codimension, what leads to the following proposition:
PROPOSITION. — There exists a set of values for (A, B, fe1, k2)for which the reduced bifurcation
équation obtained from (i) is X2-equivalent to the 7j2-codimension 2 germ given in equation(6).
Note présentée par René THOM.
0249-6291/87/03050331 $ 2.00 © Académie des Sciences
Équations différentielles/O r dinar y Differential Equations
(Systèmes dynamiques/D_ynamica/ Systems)
Solutions stables périodiques multiples d'un champ de
vecteurs sur R2 caractérisé par un monôme de degré 3
Philippe TRACQUI et Jean-François STAUB
Résumé — La coexistence de deux solutions stables périodiques pour un système différentiel
ordinaire autonome de dimension 2 incluant le terme cubique xy 1 comme seule non-linéarité est
étudiée en utilisant l'approche théorique des singularités proposée par M. Golubitsky and W.
Langford. Le déploiement obtenu par perturbation d'un centre organisateur de Z2-codimension 2
fournit une description topologique des trajectoires périodiques multiples de ce système qui
bifurquent à partir de la solution d'équilibre.
Multiple stable periodic solutions of a vector field on R2 characterized by a
monomial ofdegree 3
Âbstract — The coexistence of two stable periodic solutions for a two-dimensional autonomous
ordinary differential System including the cubic lerm xy 2 as the only nonlinearity is studied by mean
of the theoretical approach of singularities proposed by M. Golubitsky and W. Langford. The
unfolding obtained by a perturbation of a Z2-codimension 2 organizing centre yields a topological
description ofthis System's multiple periodic trajectories that bifurcate from the equilibrium solution.
Abridged English version — In this paper we use singularity theory methods to establish that
the autonomous nonlinear differential System (1) admits two stable periodic solutions for a same
set of parameter values. For a given bifurcation parameter A, we consider the family of germs
g(u, X) which hâve Z2-symmetry and which are defined by équation (2). Following a theorem
of [1], there exist germs g (u, X) such that locally solutions to g (u, X) = 0 are in correspondence
with small amplitude periodic •solutions of System (1).
According to the classification results given in [2] for Hopf bifurcation points where one of the
hypothèses in the classical Hopf theorem fails [3], we try to characterize germs g (u, X) which are
Z2-equivalent [1] to the reduced bifurcation problems given by (1) in a neighbourhood of such
degenerate Hopf bifurcation points.
By Computing the successive partial derivatives ax, az, azz of the function a given in équation
(2), a first family of Z2-codimension 1 degenerate points is determined (points V and W,
Fig. 1). They are defined by the condition az = 0 and at such points, the bifurcation problem is
Z2-equivalent to the germ given by équation (4) [1]. The phase plane topologies in a
neighbourhood of the points V and W are given by the universal unfolding associated to the germ
(4), i. e. by the équation (5). The bifurcation diagrams associated to H(w, X, a) always hâve a
single branch of periodic solutions. A fold of this branch appears as soon as a crosses a zéro
value. According to the sign of the derivatives ax and azz, the supercritical solutions of (1)
which bifurcate from the equilibrium solution can be either stable or unstable. The parameter
A being an unfolding parameter, this theoretical approach establishes obviously the same results
as those previously obtained by looking for the values of A for which the u2 coefficient of the
Hopf theorem vanishes [4].
By varying the values of the remaining parameters, we then try to find a family of organizing
centres with higher codimension, what leads to the following proposition:
PROPOSITION. — There exists a set of values for (A, B, fe1, k2)for which the reduced bifurcation
équation obtained from (i) is X2-equivalent to the 7j2-codimension 2 germ given in equation(6).
Note présentée par René THOM.
0249-6291/87/03050331 $ 2.00 © Académie des Sciences
Le taux de reconnaissance estimé pour ce document est de 92.7%.
En savoir plus sur l'OCR
En savoir plus sur l'OCR
Le texte affiché peut comporter un certain nombre d'erreurs. En effet, le mode texte de ce document a été généré de façon automatique par un programme de reconnaissance optique de caractères (OCR). Le taux de reconnaissance estimé pour ce document est de 92.7%.
- Auteurs similaires Académie des sciences Académie des sciences /services/engine/search/sru?operation=searchRetrieve&version=1.2&maximumRecords=50&collapsing=true&exactSearch=true&query=(dc.creator adj "Académie des sciences" or dc.contributor adj "Académie des sciences")Mémoires (Académie des sciences, belles lettres et arts d'Angers) /ark:/12148/bd6t542070206.highres Revue de l'Agenais et des anciennes provinces du Sud-Ouest : historique, littéraire, scientifique & artistique / publiée à Agen sous la direction de M. Fernand Lamy,... /ark:/12148/bpt6k30461887.highres
-
-
Page
chiffre de pagination vue 21/48
- Recherche dans le document Recherche dans le document https://gallica.bnf.fr/services/ajax/action/search/ark:/12148/bpt6k5744571t/f21.image ×
Recherche dans le document
- Partage et envoi par courriel Partage et envoi par courriel https://gallica.bnf.fr/services/ajax/action/share/ark:/12148/bpt6k5744571t/f21.image
- Téléchargement / impression Téléchargement / impression https://gallica.bnf.fr/services/ajax/action/download/ark:/12148/bpt6k5744571t/f21.image
- Mise en scène Mise en scène ×
Mise en scène
Créer facilement :
- Marque-page Marque-page https://gallica.bnf.fr/services/ajax/action/bookmark/ark:/12148/bpt6k5744571t/f21.image ×
Gérer son espace personnel
Ajouter ce document
Ajouter/Voir ses marque-pages
Mes sélections ()Titre - Acheter une reproduction Acheter une reproduction https://gallica.bnf.fr/services/ajax/action/pa-ecommerce/ark:/12148/bpt6k5744571t
- Acheter le livre complet Acheter le livre complet https://gallica.bnf.fr/services/ajax/action/indisponible/achat/ark:/12148/bpt6k5744571t
- Signalement d'anomalie Signalement d'anomalie https://sindbadbnf.libanswers.com/widget_standalone.php?la_widget_id=7142
- Aide Aide https://gallica.bnf.fr/services/ajax/action/aide/ark:/12148/bpt6k5744571t/f21.image × Aide
Facebook
Twitter
Pinterest