Titre : Comptes rendus de l'Académie des sciences. Série 1, Mathématique
Auteur : Académie des sciences (France). Auteur du texte
Éditeur : Elsevier (Paris)
Éditeur : Centrale des revuesCentrale des revues (Montrouge)
Éditeur : ElsevierElsevier (Paris)
Date d'édition : 1987-12-07
Notice du catalogue : http://catalogue.bnf.fr/ark:/12148/cb34394200t
Type : texte texte
Type : publication en série imprimée publication en série imprimée
Langue : français
Format : Nombre total de vues : 29122 Nombre total de vues : 29122
Description : 07 décembre 1987 07 décembre 1987
Description : 1987/12/07 (SER1,T305,N18). 1987/12/07 (SER1,T305,N18).
Droits : Consultable en ligne
Identifiant : ark:/12148/bpt6k5494313b
Source : Archives de l'Académie des sciences, 2008-94315
Conservation numérique : Bibliothèque nationale de France
Date de mise en ligne : 01/12/2010
- Aller à la page de la table des matièresI
- CONTENTS 1987 - VOLUME 305 - SECTION I - N° 18
- .......... Page(s) .......... 761
- .......... Page(s) .......... 761
- Using Apery's method for acceleration of convergence, we give an irrationality measure of the Carlitz's zeta function for F2(T) at 1.
- .......... Page(s) .......... 765
- It is proved that the derivatives of the Bessel polynomials of arbitrary order as well as, under a not very restrictive condition, the generalized Bessel polynomials, have the "minimum of real roots" property. The applied method is more elementary than that has been used so far to prove the analogous result concerning the Bessel polynomials. And then we compare these roots.
- .......... Page(s) .......... 769
- .......... Page(s) .......... 769
- In the framework of the deformation program (* products) initiated in [3], a nilpotent Fourier transform was introduced ([5], [7]). This transformation is canonically defined on the space (G) of C rapidly decreasing functions on the group G to a space of C functions on a dense open subset of g. We prove here that this transformation is continuous.
- .......... Page(s) .......... 773
- .......... Page(s) .......... 773
- We prove several inverse mapping theorems for set-valued maps defined on a complete metric space. Results are applied to the study of controllability of infinite dimensional control systems.
- .......... Page(s) .......... 777
- The only "harmonic" functions on a polycyclic discrete group, or on a solvable connected Lie group are the constants.
- .......... Page(s) .......... 781
- .......... Page(s) .......... 781
- We study a Dirichlet problem of general type on a harmonic space in the sense of Brelot. We show that the solutions verify a kind of L1 convergence to the boundary data. We consider the Green lines in an open set of which admits a Green function. Finally we give a criterion for the "convergence of a family of lines" in the compactification of R. S. Martin.
- .......... Page(s) .......... 785
- .......... Page(s) .......... 785
- We present new results on existence, uniqueness and the maximal regularity on the abstract elliptic equation of the second order with non homogeneous boundary conditions and without density of domain, but with necessary hypothesis on compatibility of data and boundary conditions. We complete this study by presenting two tables summarising the principal hypothesis used until now to resolve this equation and the parabolic equation.
- .......... Page(s) .......... 793
- .......... Page(s) .......... 793
- We describe a homotopy-invariant algebraic K-theory KH for both associative rings and schemes. It agrees with Quillen K-theory K for regular rings and schemes, and if coefficients mod l are taken and l is a unit. The Fundamental Theorem of K-theory holds for KH. KH-theory also satisfies excision for ideals, excision for open subschemes and Zariski cohomological descent. Many known "Chern characters" on K-theory factor through KH-theory.
- COMPTES RENDUS DE L'ACADEMIE DES SCIENCES MATHEMATIQUE 1987 - Tome 305 - Série I - n° 18
C. R. Acad. Sci. Paris, t 305, Série I, p. 789-791, 1987 789
Géométrie/Geomefry
Flot géodésique et espaces se de A. Gray
Angel MONTESINOS
Résumé — Des techniques très simples de théorie ergodique permettent de retrouver et d'améliorer
des résultats de A. Gray, concernant les espaces dont le tenseur de Ricci vérifie
V.-P^+VtPy+VjP^O.
Géodésie flow and A. Gray's se spaces
Abstract — Elementary technics of ergodic theory bring new proofs and improvements of A. Gray's
results about manifolds, the Ricci tensor ofwhich satisfies V, pjn+V^py+VjPj^O.
1. INTRODUCTION. — Soient M une variété avec une connexion affine et p le tenseur de
Ricci. On dit que M est dans la classe se si
ce que l'on peut écrire V; pjk+Vk py+V; pki=0.
Gray [2] a montré que si M est riemannienne, compacte, à courbure sectionnelle
négative et vérifie (1), alors M est un espace d'Einstein, c'est-à-dire p=cg, où g est le
tenseur métrique.
Nous retrouvons ce résultat à partir d'une interprétation géométrique de la
condition (1).
On prouvera aussi qu'un espace homogène naturellement réductif est dans la classe
se.
2. INTERPRÉTATION.
LEMME. — Soit r un 2-tenseur symétrique covariant sur une variété M munie d'une
connexion affine sans torsion, et f l'application du fibre tangent TM dans U définie par
f(v) = r(v, v); alors f est invariante par le flot géodésique si et seulement si
Preuve. — Prenons des coordonnées normales (q) en x e M et soient (q, q) les coordon-
nées correspondantes sur TM. Si y (s) désigne la géodésique déterminée par y(0)=x et
Y{0) = on peut écrire y(s) = (sq°, q°).
L'invariance de f par le flot géodésique est équivalente à
Ceci s'exprime en coordonnées par :
Étant donné que (8/ô qk)riJ(x) = Vkrij et que q° est arbitraire, le lemme en résulte.
3. LE CAS À COURBURE SECTIONNELLE NÉGATIVE.
THÉORÈME 1. — Soit r un 2-tenseur symétrique covariant sur la variété riemannienne
orientable M, tel que
Note présentée par Paul MALLIAVIN.
0249-6291/87/03050789 $ 2.00 © Académie des Sciences
Géométrie/Geomefry
Flot géodésique et espaces se de A. Gray
Angel MONTESINOS
Résumé — Des techniques très simples de théorie ergodique permettent de retrouver et d'améliorer
des résultats de A. Gray, concernant les espaces dont le tenseur de Ricci vérifie
V.-P^+VtPy+VjP^O.
Géodésie flow and A. Gray's se spaces
Abstract — Elementary technics of ergodic theory bring new proofs and improvements of A. Gray's
results about manifolds, the Ricci tensor ofwhich satisfies V, pjn+V^py+VjPj^O.
1. INTRODUCTION. — Soient M une variété avec une connexion affine et p le tenseur de
Ricci. On dit que M est dans la classe se si
ce que l'on peut écrire V; pjk+Vk py+V; pki=0.
Gray [2] a montré que si M est riemannienne, compacte, à courbure sectionnelle
négative et vérifie (1), alors M est un espace d'Einstein, c'est-à-dire p=cg, où g est le
tenseur métrique.
Nous retrouvons ce résultat à partir d'une interprétation géométrique de la
condition (1).
On prouvera aussi qu'un espace homogène naturellement réductif est dans la classe
se.
2. INTERPRÉTATION.
LEMME. — Soit r un 2-tenseur symétrique covariant sur une variété M munie d'une
connexion affine sans torsion, et f l'application du fibre tangent TM dans U définie par
f(v) = r(v, v); alors f est invariante par le flot géodésique si et seulement si
Preuve. — Prenons des coordonnées normales (q) en x e M et soient (q, q) les coordon-
nées correspondantes sur TM. Si y (s) désigne la géodésique déterminée par y(0)=x et
Y{0) = on peut écrire y(s) = (sq°, q°).
L'invariance de f par le flot géodésique est équivalente à
Ceci s'exprime en coordonnées par :
Étant donné que (8/ô qk)riJ(x) = Vkrij et que q° est arbitraire, le lemme en résulte.
3. LE CAS À COURBURE SECTIONNELLE NÉGATIVE.
THÉORÈME 1. — Soit r un 2-tenseur symétrique covariant sur la variété riemannienne
orientable M, tel que
Note présentée par Paul MALLIAVIN.
0249-6291/87/03050789 $ 2.00 © Académie des Sciences
Le taux de reconnaissance estimé pour ce document est de 92.36%.
En savoir plus sur l'OCR
En savoir plus sur l'OCR
Le texte affiché peut comporter un certain nombre d'erreurs. En effet, le mode texte de ce document a été généré de façon automatique par un programme de reconnaissance optique de caractères (OCR). Le taux de reconnaissance estimé pour ce document est de 92.36%.
- Auteurs similaires Académie des sciences Académie des sciences /services/engine/search/sru?operation=searchRetrieve&version=1.2&maximumRecords=50&collapsing=true&exactSearch=true&query=(dc.creator adj "Académie des sciences" or dc.contributor adj "Académie des sciences")
-
-
Page
chiffre de pagination vue 39/52
- Recherche dans le document Recherche dans le document https://gallica.bnf.fr/services/ajax/action/search/ark:/12148/bpt6k5494313b/f39.image ×
Recherche dans le document
- Partage et envoi par courriel Partage et envoi par courriel https://gallica.bnf.fr/services/ajax/action/share/ark:/12148/bpt6k5494313b/f39.image
- Téléchargement / impression Téléchargement / impression https://gallica.bnf.fr/services/ajax/action/download/ark:/12148/bpt6k5494313b/f39.image
- Mise en scène Mise en scène ×
Mise en scène
Créer facilement :
- Marque-page Marque-page https://gallica.bnf.fr/services/ajax/action/bookmark/ark:/12148/bpt6k5494313b/f39.image ×
Gérer son espace personnel
Ajouter ce document
Ajouter/Voir ses marque-pages
Mes sélections ()Titre - Acheter une reproduction Acheter une reproduction https://gallica.bnf.fr/services/ajax/action/pa-ecommerce/ark:/12148/bpt6k5494313b
- Acheter le livre complet Acheter le livre complet https://gallica.bnf.fr/services/ajax/action/indisponible/achat/ark:/12148/bpt6k5494313b
- Signalement d'anomalie Signalement d'anomalie https://sindbadbnf.libanswers.com/widget_standalone.php?la_widget_id=7142
- Aide Aide https://gallica.bnf.fr/services/ajax/action/aide/ark:/12148/bpt6k5494313b/f39.image × Aide
Facebook
Twitter
Pinterest