Titre : Comptes rendus de l'Académie des sciences. Série 1, Mathématique
Auteur : Académie des sciences (France). Auteur du texte
Éditeur : Elsevier (Paris)
Éditeur : Centrale des revuesCentrale des revues (Montrouge)
Éditeur : ElsevierElsevier (Paris)
Date d'édition : 1987-09-30
Notice du catalogue : http://catalogue.bnf.fr/ark:/12148/cb34394200t
Type : texte texte
Type : publication en série imprimée publication en série imprimée
Langue : français
Format : Nombre total de vues : 29122 Nombre total de vues : 29122
Description : 30 septembre 1987 30 septembre 1987
Description : 1987/09/30 (SER1,T305,N10). 1987/09/30 (SER1,T305,N10).
Droits : Consultable en ligne
Identifiant : ark:/12148/bpt6k5494281t
Source : Archives de l'Académie des sciences, 2008-94315
Conservation numérique : Bibliothèque nationale de France
Date de mise en ligne : 01/12/2010
- Aller à la page de la table des matièresI
- CONTENTS 1987 - VOLUME 305 - SECTION I - N° 10
- .......... Page(s) .......... 393
- .......... Page(s) .......... 393
- A new proof of existence for "strong Frobenius structure" of the hypergeometric differential equation is given. The interest of this proof lies in the fact that the geometric interpretation of the equation as "Picard-Fuchs equation" is not used.
- .......... Page(s) .......... 397
- It is shown that the set of squares
and, more generally, a set of the form
where p(n) is any polynomial taking integer values, satisfies the pointwise ergodic theorem for L2-functions. This gives an affirmative answer to a problem considered by A. Bellow and H. Furstenberg. The previous result generalizes to commuting systems of transformations.
- .......... Page(s) .......... 403
- .......... Page(s) .......... 403
- The aim of this Note is to show by an explicit verification, that the stable category of a self injective finite dimensional algebra over a field, graded by the inverse of the equivalence induced by the Heller operator, is triangulated (cf. [2]).
- .......... Page(s) .......... 407
- To every homogeneous polynomial P on Rk we associate a triplet of differential operators (X_, X0, X+) on the same space, which satisfies the commutation relations of the usual basis of sl (2, R) and such that X+ = Cte P(x). We examine more closely the case where P is the relative invariant of a prehomogeneous vector space and give, in some cases, the decomposition of the space of regular functions on the open orbit.
- .......... Page(s) .......... 411
- We consider the uniqueness of the inverse scattering problem for the wave equation . If and if the asymptotic wave profiles related to coincide for , then .
- .......... Page(s) .......... 415
- We study the Klein-Gordon symbolic calculus of operators acting on solutions of the free Klein-Gordon equation. It contracts to the Weyl calculus as . Mathematically, it may also be considered as a pseudodifferential analysis on the unit ball of Rn.
- .......... Page(s) .......... 419
- .......... Page(s) .......... 419
- Let E be a holomorphic vector bundle of rank r over a compact complex manifold X of dimension n. If E is positive in the sense of Griffiths, it is shown that the Dolbeault cohomology groups vanish for and . The proof rests on the well-known fact that any tensor power splits into irreductible representations of Gl(E), each component being canonically isomorphic to the space of sections of a positive homogeneous line bundle over a flag manifold of E. The vanishing property is then obtained by a combination of Le Potier's isomorphism theorem with a new curvature estimate for the bundle of X-relative differential forms on the flag manifold of E.
- .......... Page(s) .......... 431
- .......... Page(s) .......... 431
- We propose a particle method of resolution of convection-diffusion equations which is a generalization of the one proposed in [1]. The method is based on the approximation of a diffusion operator by an integral operator and consists in two steps: the approximation of the solution of the convection-diffusion problem by the solution of the obtained integro-differential equation and the resolution of the integro-differential equation by a particle method.
- All rational curves are determined with Bernstein polynomials by a polygon of control weighted points and control vectors. Stable algorithms for computing any point are given with a view to their applications in CAD. CAM and robotics.
- .......... Page(s) .......... 441
- .......... Page(s) .......... 441
- We determine, by homogenization, the limit load of a periodic nonhomogeneous structure. For a structure clamped on its boundary it was proposed [1] and proved [4] that the problem reduces to a limit load problem for an homogenized structure the strength capacity of which was characterized. For a structure loaded on its boundary the present work shows that the limit load problem must include an additional strength criterion on the stress vector on the boundary. This strength criterion is more restrictive than the condition which can be deduced from the bulk strength capacity.
- COMPTES RENDUS DE L'ACADEMIE DES SCIENCES
- MATHEMATIQUE 1987 - Tome 305 - Série I - n° 10
- Théorie des nombres
- Algèbre
- .......... Page(s) .......... 403
- Théorie des groupes
- .......... Page(s) .......... 407
- Analyse mathématique
- .......... Page(s) .......... 415
- Analyse complexe
- Analyse fonctionnelle
- .......... Page(s) .......... 423
- Géométrie différentielle
- .......... Page(s) .......... 427
- Analyse numérique
- .......... Page(s) .......... 431
- Problèmes mathématiques de la mécanique
- .......... Page(s) .......... 441
C. R. Acad. Sci. Paris, t. 305, Série I, p. 423-426, 1987 425
2.3. PROPOSITION. — Soient M 2 N des facteurs de type III et E : M -*■ N une espérance
conditionnelle normale fidèle. Supposons qu'il existe t dans T(N) tel que wt^T(M) pour
tout entier non nul n ; alors IndE= co.
Preuve. — Soit t comme dans l'énoncé. Il existe un état normal fidèle cp sur N tel que
crj?=IdN. Soit \|/=cp°E, alors O-*|PS, = CTJ' pour tout s dans U. En particulier CT*|Ps) = IdN
donc M'aN, où oc=cr*. D'après un théorème de Takesaki (10.1; [6]), il existe une
espérance conditionnelle normale fidèle F: M -> M" telle \|/=\|f°F, c'est-à-dire
cp o E=cp ° Ej ° F, où E-t est la restriction de E sur M". Donc E = E± ° F d'après un résultat
de Haagerup (11.13; [6]). Comme a" est extérieur sur M pour tout entier non nul n,
Ind F = oo d'après 1.4 (iii) et Ind E = oo d'après 2.2.
Comme les facteurs de type III,, 0<À^1, sont caractérisés;par l'invariant T, on a :
2.4. COROLLAIRE. — Soit E:M->N une espérance conditionnelle normale fidèle où M
est un facteur de type IIIX et N un sous-facteur de typelllr 0existe un nombre rationnel r>0 tel que y = Xr. • '
La construction suivante est analogue à celle de Jones pour des facteurs de type H1
(3.1.8; [1]).
2.5. PROPOSITION. — Soient M2N des facteurs de type III. Supposons que E:M->-N
soit une espérance conditionnelle normale fidèle avec IndEfacteur P espéré dans N, une espérance conditionnelle normale fidèle F : N -» P telle que
Ind F=Ind E, et un projecteur e dans M tel que =M et E(e) = (IndE)_ 11.
Preuve. — On peut supposer que N possède un vecteur séparateur et totalisateur ri.
Soit J l'involution associée à T|. On pose P=JM'J, F = xJE_1(J. J) J où x = (IndE)- 1.
Soient totalisateur Ç de N tel que \j/=co^ et J^=J. Soit e le projecteur défini par e(x£) = F(x)E,
pour tout x dans N. On vérifie sans difficulté les propriétés énoncées.
2.6. PROPOSITION. — Soient M 2 N des facteurs de type III, E: M -> N une espérance
conditionnelle normale fidèle et cp un état normal fidèle sur N tel que cp°E = cûç, où \ est
un vecteur séparateur et totalisateur de M. Soient J l'involution associée à t, et eN le
projecteur défini par eN (x Q=E (x) Ç.
Les conditions suivantes sont équivalentes :
(i) Ind E < 00 ;
(ii) pour tout x dans, i"Z existe y (unique) dans N tel que xeN=yeN;
(iii) il existe u dans M tel que E(u*u) = l, «eNu*=l, x = wE(u*X) pour tout x dans
M;
(iv) il existe u dans M tel que ueNM*= 1.
Preuve. - (i) =*- (ii) voir (3. 3 ; (3. 3 ; [2]).
(ii) => (iii) Puisque < M, eN > = JN' J (3.2 ; [2]), c'est un facteur de type III. Alors eN ~ 1
dans < M, eN > et il existe v dans < M, eN > tel que v* v = 1 et w* = eN. D'après l'hypothèse,
il existe u dans M tel que weN=i;*eN = D*. Ainsi ue^u*=v*v=\ et on vérifie que u
possède les propriétés dans (iii).
(iii) => (iv) évident.
(iv)=>(i) Soit F = JE_1(J.J)J; alors FeP(, M). Si u satisfait la condition
(iv), IndE=E-1(l) = F(l) = F(weNM*)=MF(eN)u*=uu*, puisque E-1(eN) = l et que
JeNJ = eN(3.1, 3.2; [2]).
Remarque. — La condition (iii) ci-dessus est due à Kosaki (p. 132; [2]).
2.3. PROPOSITION. — Soient M 2 N des facteurs de type III et E : M -*■ N une espérance
conditionnelle normale fidèle. Supposons qu'il existe t dans T(N) tel que wt^T(M) pour
tout entier non nul n ; alors IndE= co.
Preuve. — Soit t comme dans l'énoncé. Il existe un état normal fidèle cp sur N tel que
crj?=IdN. Soit \|/=cp°E, alors O-*|PS, = CTJ' pour tout s dans U. En particulier CT*|Ps) = IdN
donc M'aN, où oc=cr*. D'après un théorème de Takesaki (10.1; [6]), il existe une
espérance conditionnelle normale fidèle F: M -> M" telle \|/=\|f°F, c'est-à-dire
cp o E=cp ° Ej ° F, où E-t est la restriction de E sur M". Donc E = E± ° F d'après un résultat
de Haagerup (11.13; [6]). Comme a" est extérieur sur M pour tout entier non nul n,
Ind F = oo d'après 1.4 (iii) et Ind E = oo d'après 2.2.
Comme les facteurs de type III,, 0<À^1, sont caractérisés;par l'invariant T, on a :
2.4. COROLLAIRE. — Soit E:M->N une espérance conditionnelle normale fidèle où M
est un facteur de type IIIX et N un sous-facteur de typelllr 0
La construction suivante est analogue à celle de Jones pour des facteurs de type H1
(3.1.8; [1]).
2.5. PROPOSITION. — Soient M2N des facteurs de type III. Supposons que E:M->-N
soit une espérance conditionnelle normale fidèle avec IndE
Ind F=Ind E, et un projecteur e dans M tel que
Preuve. — On peut supposer que N possède un vecteur séparateur et totalisateur ri.
Soit J l'involution associée à T|. On pose P=JM'J, F = xJE_1(J. J) J où x = (IndE)- 1.
Soient totalisateur Ç de N tel que \j/=co^ et J^=J. Soit e le projecteur défini par e(x£) = F(x)E,
pour tout x dans N. On vérifie sans difficulté les propriétés énoncées.
2.6. PROPOSITION. — Soient M 2 N des facteurs de type III, E: M -> N une espérance
conditionnelle normale fidèle et cp un état normal fidèle sur N tel que cp°E = cûç, où \ est
un vecteur séparateur et totalisateur de M. Soient J l'involution associée à t, et eN le
projecteur défini par eN (x Q=E (x) Ç.
Les conditions suivantes sont équivalentes :
(i) Ind E < 00 ;
(ii) pour tout x dans
(iii) il existe u dans M tel que E(u*u) = l, «eNu*=l, x = wE(u*X) pour tout x dans
M;
(iv) il existe u dans M tel que ueNM*= 1.
Preuve. - (i) =*- (ii) voir (3. 3 ; (3. 3 ; [2]).
(ii) => (iii) Puisque < M, eN > = JN' J (3.2 ; [2]), c'est un facteur de type III. Alors eN ~ 1
dans < M, eN > et il existe v dans < M, eN > tel que v* v = 1 et w* = eN. D'après l'hypothèse,
il existe u dans M tel que weN=i;*eN = D*. Ainsi ue^u*=v*v=\ et on vérifie que u
possède les propriétés dans (iii).
(iii) => (iv) évident.
(iv)=>(i) Soit F = JE_1(J.J)J; alors FeP(
(iv), IndE=E-1(l) = F(l) = F(weNM*)=MF(eN)u*=uu*, puisque E-1(eN) = l et que
JeNJ = eN(3.1, 3.2; [2]).
Remarque. — La condition (iii) ci-dessus est due à Kosaki (p. 132; [2]).
Le taux de reconnaissance estimé pour ce document est de 91.47%.
En savoir plus sur l'OCR
En savoir plus sur l'OCR
Le texte affiché peut comporter un certain nombre d'erreurs. En effet, le mode texte de ce document a été généré de façon automatique par un programme de reconnaissance optique de caractères (OCR). Le taux de reconnaissance estimé pour ce document est de 91.47%.
- Auteurs similaires Académie des sciences Académie des sciences /services/engine/search/sru?operation=searchRetrieve&version=1.2&maximumRecords=50&collapsing=true&exactSearch=true&query=(dc.creator adj "Académie des sciences" or dc.contributor adj "Académie des sciences")Mémoires (Académie des sciences, belles lettres et arts d'Angers) /ark:/12148/bd6t542070206.highres Revue de l'Agenais et des anciennes provinces du Sud-Ouest : historique, littéraire, scientifique & artistique / publiée à Agen sous la direction de M. Fernand Lamy,... /ark:/12148/bpt6k30461887.highres
-
-
Page
chiffre de pagination vue 43/64
- Recherche dans le document Recherche dans le document https://gallica.bnf.fr/services/ajax/action/search/ark:/12148/bpt6k5494281t/f43.image ×
Recherche dans le document
- Partage et envoi par courriel Partage et envoi par courriel https://gallica.bnf.fr/services/ajax/action/share/ark:/12148/bpt6k5494281t/f43.image
- Téléchargement / impression Téléchargement / impression https://gallica.bnf.fr/services/ajax/action/download/ark:/12148/bpt6k5494281t/f43.image
- Mise en scène Mise en scène ×
Mise en scène
Créer facilement :
- Marque-page Marque-page https://gallica.bnf.fr/services/ajax/action/bookmark/ark:/12148/bpt6k5494281t/f43.image ×
Gérer son espace personnel
Ajouter ce document
Ajouter/Voir ses marque-pages
Mes sélections ()Titre - Acheter une reproduction Acheter une reproduction https://gallica.bnf.fr/services/ajax/action/pa-ecommerce/ark:/12148/bpt6k5494281t
- Acheter le livre complet Acheter le livre complet https://gallica.bnf.fr/services/ajax/action/indisponible/achat/ark:/12148/bpt6k5494281t
- Signalement d'anomalie Signalement d'anomalie https://sindbadbnf.libanswers.com/widget_standalone.php?la_widget_id=7142
- Aide Aide https://gallica.bnf.fr/services/ajax/action/aide/ark:/12148/bpt6k5494281t/f43.image × Aide
Facebook
Twitter
Pinterest