Titre : Comptes rendus hebdomadaires des séances de l'Académie des sciences / publiés... par MM. les secrétaires perpétuels
Auteur : Académie des sciences (France). Auteur du texte
Éditeur : Bachelier (Paris)
Éditeur : Gauthier-VillarsGauthier-Villars (Paris)
Date d'édition : 1893-01-01
Notice du catalogue : http://catalogue.bnf.fr/ark:/12148/cb343481087
Type : texte texte
Type : publication en série imprimée publication en série imprimée
Langue : français
Format : Nombre total de vues : 454219 Nombre total de vues : 454219
Description : 01 janvier 1893 01 janvier 1893
Description : 1893/01/01 (T116)-1893/06/30. 1893/01/01 (T116)-1893/06/30.
Description : Collection numérique : Originaux conservés aux... Collection numérique : Originaux conservés aux archives de l'Académie des sciences
Description : Collection numérique : Collections de l’École... Collection numérique : Collections de l’École nationale des ponts et chaussées
Description : Collection numérique : Thématique :... Collection numérique : Thématique : mathématiques, mécanique, sciences naturelles
Droits : Consultable en ligne
Identifiant : ark:/12148/bpt6k30724
Source : Bibliothèque nationale de France
Conservation numérique : Bibliothèque nationale de France
Date de mise en ligne : 15/10/2007
ANALYSE MATHÉMATIQUE. Sur les singularités essentielles des équations
différentielles d'ordre supérieur. Note de M. PAUL PAINLEVÉ, présentée
par M. Picard.
« Je distinguerai, dans cette Note, les points singuliers non algébriques
x0 d'une fonction analytique y(x) en points transcendants et en points
essentiels, suivant que y tend ou non vers une valeur déterminée quand x
vient en xo sur un chemin quelconque à l'intérieur du domaine où y
existe, mais sans tourner autour d'aucun point critique de y.
» Ceci posé, soit une équation du second ordre algébrique eny",y',y, x
est vérifiée (s étant choisi aussi petit qu'on veut).
A l'inverse de ce qui se passe, comme je l'ai montré, pour le premier
ordre, l'intégrale d'une telle équation admet, en général, des points transcen-
dants mobiles (qu'on sait d'ailleurs étudier) mais c'est la présence pos-
sible de points essentiels mobiles, que rien ne met en évidence, qui a arrêté
jusqu'ici l'étude des fonctions définies par les équations d'ordre supérieur.
Des équations (i) très simples offrent l'exemple de cette singularité. Mais
on peut montrer, et c'est là un fait assez inattendu, que, pour une équa-
tion (i) prise au hasard, il n'existe pas de points essentiels.
» En généralisant la méthode que j'ai développée dans le cas beaucoup
plus simple du premier ordre, on parvient, en effet, au théorème suivant
(que j'énonce en supposant qu'on a remplacé y par pour que y = oo
soit sûrement une valeur ordinaire)
» Théorème A. Soit $(x,y,y) = o la condition pour qu'une valeur
de y" soit infinie ou pour que deux valeurs dey" se permutent. Si l'intégrale
de (i) a des points essentiels mobiles,
» I. Le polynôme S contient un facteur de la forme S, (x, y), où y figure;
» II. L'équation (i), où l'on regarde x comme la fonction, admet, quel
que soit x0, l'intégrale « = «“;
» III. Si le point arbitraire xQ est un point essentiel de y(x), en tout point x
voisin de xo, une au moins des inégalités
différentielles d'ordre supérieur. Note de M. PAUL PAINLEVÉ, présentée
par M. Picard.
« Je distinguerai, dans cette Note, les points singuliers non algébriques
x0 d'une fonction analytique y(x) en points transcendants et en points
essentiels, suivant que y tend ou non vers une valeur déterminée quand x
vient en xo sur un chemin quelconque à l'intérieur du domaine où y
existe, mais sans tourner autour d'aucun point critique de y.
» Ceci posé, soit une équation du second ordre algébrique eny",y',y, x
est vérifiée (s étant choisi aussi petit qu'on veut).
A l'inverse de ce qui se passe, comme je l'ai montré, pour le premier
ordre, l'intégrale d'une telle équation admet, en général, des points transcen-
dants mobiles (qu'on sait d'ailleurs étudier) mais c'est la présence pos-
sible de points essentiels mobiles, que rien ne met en évidence, qui a arrêté
jusqu'ici l'étude des fonctions définies par les équations d'ordre supérieur.
Des équations (i) très simples offrent l'exemple de cette singularité. Mais
on peut montrer, et c'est là un fait assez inattendu, que, pour une équa-
tion (i) prise au hasard, il n'existe pas de points essentiels.
» En généralisant la méthode que j'ai développée dans le cas beaucoup
plus simple du premier ordre, on parvient, en effet, au théorème suivant
(que j'énonce en supposant qu'on a remplacé y par pour que y = oo
soit sûrement une valeur ordinaire)
» Théorème A. Soit $(x,y,y) = o la condition pour qu'une valeur
de y" soit infinie ou pour que deux valeurs dey" se permutent. Si l'intégrale
de (i) a des points essentiels mobiles,
» I. Le polynôme S contient un facteur de la forme S, (x, y), où y figure;
» II. L'équation (i), où l'on regarde x comme la fonction, admet, quel
que soit x0, l'intégrale « = «“;
» III. Si le point arbitraire xQ est un point essentiel de y(x), en tout point x
voisin de xo, une au moins des inégalités
Le taux de reconnaissance estimé pour ce document est de 93.42%.
En savoir plus sur l'OCR
En savoir plus sur l'OCR
Le texte affiché peut comporter un certain nombre d'erreurs. En effet, le mode texte de ce document a été généré de façon automatique par un programme de reconnaissance optique de caractères (OCR). Le taux de reconnaissance estimé pour ce document est de 93.42%.
- Collections numériques similaires Vallès Jules Vallès Jules /services/engine/search/sru?operation=searchRetrieve&version=1.2&maximumRecords=50&collapsing=true&exactSearch=true&query=(dc.creator adj "Vallès Jules" or dc.contributor adj "Vallès Jules")Lévy Daniel Lévy Daniel /services/engine/search/sru?operation=searchRetrieve&version=1.2&maximumRecords=50&collapsing=true&exactSearch=true&query=(dc.creator adj "Lévy Daniel" or dc.contributor adj "Lévy Daniel")
- Auteurs similaires Vallès Jules Vallès Jules /services/engine/search/sru?operation=searchRetrieve&version=1.2&maximumRecords=50&collapsing=true&exactSearch=true&query=(dc.creator adj "Vallès Jules" or dc.contributor adj "Vallès Jules")Lévy Daniel Lévy Daniel /services/engine/search/sru?operation=searchRetrieve&version=1.2&maximumRecords=50&collapsing=true&exactSearch=true&query=(dc.creator adj "Lévy Daniel" or dc.contributor adj "Lévy Daniel")
-
-
Page
chiffre de pagination vue 364/1600
- Recherche dans le document Recherche dans le document https://gallica.bnf.fr/services/ajax/action/search/ark:/12148/bpt6k30724/f364.image ×
Recherche dans le document
- Partage et envoi par courriel Partage et envoi par courriel https://gallica.bnf.fr/services/ajax/action/share/ark:/12148/bpt6k30724/f364.image
- Téléchargement / impression Téléchargement / impression https://gallica.bnf.fr/services/ajax/action/download/ark:/12148/bpt6k30724/f364.image
- Mise en scène Mise en scène ×
Mise en scène
Créer facilement :
- Marque-page Marque-page https://gallica.bnf.fr/services/ajax/action/bookmark/ark:/12148/bpt6k30724/f364.image ×
Gérer son espace personnel
Ajouter ce document
Ajouter/Voir ses marque-pages
Mes sélections ()Titre - Acheter une reproduction Acheter une reproduction https://gallica.bnf.fr/services/ajax/action/pa-ecommerce/ark:/12148/bpt6k30724
- Acheter le livre complet Acheter le livre complet https://gallica.bnf.fr/services/ajax/action/indisponible/achat/ark:/12148/bpt6k30724
- Signalement d'anomalie Signalement d'anomalie https://sindbadbnf.libanswers.com/widget_standalone.php?la_widget_id=7142
- Aide Aide https://gallica.bnf.fr/services/ajax/action/aide/ark:/12148/bpt6k30724/f364.image × Aide
Facebook
Twitter
Pinterest